DevzDev

P — i
Arch2Arch

dev dev”
By developers, for developers.

Home Dev Centers

Newsgroups

Community CodeShare

hea.com

GET INVOLVED

New to Java?

Blogs

CodeShare
Newsgroups

Vviki

User Groups

Submit Content/Code

PRODUCT CENTERS

BEA Agualogic
Agualogic BPM Suite
Agual.ogic Service Bus
WebLogic Platform
WeblLogic Server

BEA Workshop
WeblLogic Portal
WeblLogic Integration
BEA JRockit

WeblLogic Event Server
BEA WLCP

More Product Centers

TECHNOLOGY CENTERS

Controls

Web Services
Eclipse

XML

EJB
Persistence
JMS

Vertical Markets
Dev Toolbox

BROWSE BY ROLE

Platform Admin

DevZDev = Articles

HOW TO USE XML MAPS

by Tom Clements, Radu Preotiuc
11/12/2002

Wouldn't it be nice to be able to handle XML data in Java code without having to immerse yourself in all the low-level details of

the markup language, without having to understand XML Schemas and DTDs, without having to marshall and unmarshall
data, and without ever having to deal with the complexities of SAX and DOM parsers?

If you've said "Yes" to any or all of the above, then the XML Mapping framework of WeblLogic Workshop will make your job as

a developer a lot easier. In Part | of this article, we talk about the different types of XML Maps, walking you through several

mapping scenarios made possible by Weblogic Workshop. Mapping syntax is described along with diagrams that call out the

correlations between XML content and Java method signatures. Some important mapping directives are also described. Part
Il of this article deals with advanced mappings that require the use of ECMASCcripting.

Why Use XML Maps?

XML provides a standard way of passing data between Web Services and Web Service clients. Because the client and the
Web Service only care about the data being passed, not about how the data is used, XML promotes loose coupling. The
implementation can change on one side of the transfer without impacting operations on the other side.

Loose coupling of this sort, however, applies only between web services, not between a web service and the XML interface it
supports. Web services are still tightly coupled to the interface. If the shape of the XML message changes, your code may
break. What WebLogic Workshop provides is a mapping layer that separates out dependencies between web service code
and XML messages, creating a loose-coupling between Java and XML.

With XML Maps, the contents of an XML message may be passed into Java parameters and Java return values may be

passed back into XML elements and attributes. The mapping layer in WeblLogic Workshop lets you specify how the XML data

is converted into Java types. WeblLogic Workshop then uses the XML map to generate the code necessary for the
conversion.

By applying XML maps, you control the translation of XML to Java or Java to XML and preserve loosely-coupled message
exchanges.

Map Types

DISCUSS
#® Post your questions or
comments below

ARTICLE TOOLS
=1 E-mail
&4 Print

Zn Blog

RELATED PRODUCTS
Check out the products
mentioned in this article:
» BEA Workshop Product
Family

RELATED TECHNOLOGIES
e \Web Services
e XML

RELATED ARTICLES

* Using JAX-WS and JAXB
with WeblLogic Server 10:
JAX-WS Customization
Binding

¢ Using JAX-WS and JAXB
with WeblLogic Server 10

s BPEL4People

BOOKMARK ARTICLE

.. del.icio.us

RESOURCES There are three types of XML maps: Digg

Dev2Dev Media Center & DZone

Article Index * Default Furl

Open Source * Custom 'g:;":‘ Reddit
e Scripted r

Security Advisories
Utilities & Tools
Events Calendar
About Dev2Dev

Note: Scripted maps are discussed in a second article.

SUBSCRIBE Default XML Maps

Dev2Dev Newsletter Web services communicate by sending and receiving XML messages. As long as the parameter types in the declaration of

RSS/XML Eeeds your Java web service match the elements and attributes defined in the XML message you expect, there is no need for

custom XML mapping. Instead, WebLogic Server automatically translates these messages to and from the types in your Java
declaration according to a natural, or default, map.

Default maps are used when there are no pre-determined constraints on the format of the XML message -- that is, when
expected XML message formats conform closely to the parameters and return values of your Java method signature.

Consider the following code snippet from an XML message carrying data used to submit a request for information about a
manufacturer's inventory. Notice that the serialNumber and partNumber element names of the XML message explicitly match
the parameter names of the Java declaration. This is the simplest possible case. The Mapping Layer simply reiterates the
Java parameter names and provides curly braces as placeholders for XML content.

Java parameter names are placed within curly braces to indicate where the XML values are to be directed. In essence, curly
braces act as substitution directives to funnel XML content to the appropriate Java parameter.

In this example, the contents of the serialNumber element ("1234") are directed via curly braces to the Java serialNumber
parameter. In the same way, the contents of the partNumber element ("widget") are directed via curly braces to the Java
partNumber parameter.

“igueryData
“merialllumber >1234 </ seria llumbex
< partlumbe rxwidget </ partllumber >
=/ queryDatas

Curly braces direct XML

ped Start map 1 cuntent to Java parameter name
* Qjws joperation
+ fjws :parameter-mnl ml-map: XML MaPng]'__a}re]'

* wget Inventor-:
“merialllumber:{serialiumber} </ sarialllumber >
d “partllame: {partHame} </ partllame=

o/ get I.n.\'\e.n.t-:t::::'
: . o End map Curly braces direct XML

content to Java parameter name

public int getInventory(String seriallumber, String partHame|
!
if (712347 equals(=erialllumbecz] &8 "widget” .equalsipartllame]||
return 1;
retuzn 0

All this typically takes place within the context of a javadoc @jws:operation. A jws file is a Java Web Service (JWS) source
code file generated by WebLogic Workshop that contains Javadoc tags that declare the properties of the web service. The
method for which the map is defined (in this case, getinventory) must be marked as a JWS operation.

Note: To illustrate the details of the processing involved, the example above explicitly defines the elements of the XML
mapping layer, which -- in a default map -- would normally be generated under the covers by WebLogic Server. Screen shots
of actual default maps are presented later in this article.

There are two types of maps described in WebLogic Workshop:

e Parameter XML maps
e Return XML maps

Parameter XML Maps

Parameter maps are used to represent the parameters sent to the Web Service. When the client passes XML data to the Web
Service, the parameter XML map defines how the data is mapped to Java types, which can then be manipulated by the Web
Service.

In the code sample described above, the double colon (: :) indicates the beginning of the parameter XML map. This is
followed by the <getinventory> element, which corresponds to the name of the Web Service method.

Note: Root tags for XML maps (such as <getinventory> above) must be unique across XML maps within a given JWS file.

Consequently, it's recommended you place your XML map within tags whose names match your Web Service method name,
since Java methods must also be unique.

The remainder of the XML map defines a queryData element and two child elements, serialNumber and partName. The
contents of the child elements, as discussed previously, are represented by curly braces. It's important to note that the
parameters specified between the curly braces must match the names of the parameters of the Web Service method for
which the map was created.

A final double colon (: :) indicates the end of the XML map.

Mapping Java Objects
On occasion, you may want to pass Java objects to a Web Service method or return a Java object from a Web Service
method. You can use the dot-operator to assign the values of Java data members to XML, and vice versa.

Suppose you have a Java object called QueryData with class members serialNumber and partName. You can reference the
individual members in the object using dot notation, as illustrated below:

public static class QueryData

1

public String =erialllumber:
public String partllame;

Sk ok
Using a comple:x data type as a parameter
Aqws operation

* fiws parameter-nl anl-map: : mMaPng La}rel'
* vgetInwventory:
* “queryData
“merialllumbe: {gueryData. seria lNumber } </ seria lllumber >
* “partllame »{gueryData .partRame} </ pactllame >

< ‘gqueryData >
t oo /getInvent oy

. Java object passed as a
.y i parameter
public int getInventory iQueryData queryDatal
1
1f (gueryData !'= null &&
11234" . equals iquerybata.serialiumber| L&
"widget " equal=igueryData.partHame| |
return 1;
return 0

Edit Maps and Interface Dialog

The nice thing about WebLogic Workshop is that default maps are constructed automatically by the underlying framework. As
a result, you don't have to build XML maps from scratch. To see an XML map from within WebLogic Workshop, simply double
click on the map icon in Design View of the Workshop canvas, as illustrated below.

| Dresign Yiew | | Source Yiew | ChDocuments and Settings' loaner' Desktop' MAPS Inventory. jws

Add Operation | = Inwventory add Conkrod -

[% D S Double dick on icon to show nﬁp

GLEHT
ﬂ—b getlnvenkary
ﬁ@—b getlnventory?
_@:}—D getlnventoryd
ﬂ)—b getlrventoryd
ﬂ—b getlnventoryS
—'—@—-0 getInventoryd
——@—# getlnventory?

Note: The Inventory.jws file, which contains complete sample code for the methods displayed above, is available for
download with this article.

The Edit Maps and Interface dialog box opens and displays the default XML map.

W Edit Maps and Interface |
XL
[Parameter st | | Returnie | -l —— Return map Custom map
This EML mesEage maps bo the paramesters of the operation,
Parameter map Map Type: (8 Defauk (O Custom
Lgetinventory xmln=s="http: /f fuwwe, operuri.org/ > t
aeriallusbers {serial Bunber i< /=erial Hunhers
cpal tHame (parcapes) < fpar el amas DEfﬂlﬂt
< /et InVentory. map
Default namespace
Java:
public ine geclnventory(String serialFueber, Jcring parclans)
= o] [comea]

Notice the two tabs (Parameter XML and Return XML) in the top panel of the Edit Maps and Interface dialog. The parameter
map is displayed because the Parameter Map tab is selected. You can toggle between the parameter and return map views
by clicking the appropriate tags.

Also notice the Default and Custom radio buttons. The Default radio button displays an XML Map automatically generated by
WebLogic Workshop. To create your own custom mapping layer, select the Custom button.

Finally, consider the default namespace. Namespaces provide a way for you to ensure that element names are unique within
a given XML document. A namespace looks like URL but -- in fact -- it's not. It's just a way to uniquely identify XML elements.
Namespaces in XML are similar to Java packages, which provide a way of differentiating between two classes with the same
name. Later in this article, we'll discuss XML mapping directives such as <xm:value>, <xm:attribute>, <xm:bind> and
<xm:multiple>. The xm prefix in these directives is a namespace qualifier.

Note: The namespace specified by the xm prefix is implicitly declared in all files where XML Maps are used but may be
overridden by another prefix you define.

Return XML Maps
Similar to parameter maps, return XML maps are typically defined within the context of a javadoc @jws:operation. Data flows,

however, are reversed. That is, return XML maps are used to map Java return values to XML.

J ok

* fiws:op=raticon

* fiws: feturn-zml ml-cap =

* “getlnventoryFesponse: m MﬂPng]-_.ﬂ}r[‘]'
* “gqueryData

* CinventoryCount > {return} </ anventor Count >

* </ que 2y Dat a

* ow/get Inventor yResponse>

public int getInventory (String serialllumber, String pactlame|

1o

“queryDatat
CinventoryCount *1</iavent oy Count »
< fgqueryData

L XML value returmed to dient

In the example above, the method getinventory() is defined by the Web Service. This method returns an inventory count for
the part requested. When the client makes a call to this method, the expected result is an integer, which is passed back to the
client by WebLogic Workshop.

Recall that when mapping parameters with an parameter map, parameter names were substituted for XML values. When
mapping a return value in a return map, the word "return" in curly braces is substituted for the XML.

For default maps, WebLogic Workshop automatically generates a return map based on the structure of the Java type, as
illustrated below.

W Ldit Maps and Interface . x|
i [
[Parameter 3L | | Rstum il | - Return map
Thes cutput XML message maps from the return waloe of the opsrstion |
D Ty (%) Dl i il O Custom |
et TnventoEyResponds Yalnd="HTTH: /o, apenuel., aEgs ™ >
CgecInventory it {return)< /geclnventoryResul t
< rgetInventoryResponess
Default
map
Return value
Nawas
public int gecinventory{String serislMusber, String pactdame)
-] [emee

As with parameter XML maps, return XML maps can use the dot-operator in conjunction with complex data types to specify
class members.

Custom XML Maps

Recall that default maps are used when the elements and attributes of an XML message conform closely to the parameters of
your Java method signature. What happens when they don't? It's sometimes the case, for example, that XML messages are
written to the standards of a specific industry, where element and attribute names may bear little resemblance to Java
parameters. Rather than trying to retrofit your web service code to meet the industry-specific needs of the client, you can
create an XML map to do the job for you.

Custom maps are therefore used when a mismatch occurs between the constraints of the expected XML message and your
Java parameters and return values. Using custom maps, you eliminate dependencies between your Java code and XML.

Consider the following code snippet from an XML message carrying data used to submit a request for information about a
manufacturer's inventory:

“getlnventor
“gquerrData
cpart ad="1234" »widgets ‘parct >
< fgqueryData
</ get Invento >

R

* fiws ioperakion

* fws parameter-aml aml-map: : .

4 get Inventorss XML Mapping Layer
* “gque £y Data

* “part id="{serialfumber}” > {partHame }</ pazckt:>

+ < /queryData:

* o/ getInventory |

LA *
+

public int getIlnventoriString seriallumber, String partHame|
1.0

In this example, the names of the XML message attributes and elements do not correspond directly to the names of the Java
parameters in the getinventory method. The XML message format, in other words, differs from the method signature of the
web service designed to handle it. You do not, however, want to change your Java implementation code. Nor do you expect
the client, whose XML message format may be specific to an industry, to conform to your web service implementation.

The solution, as provided by WebLogic Workshop, is to construct a mapping layer in the JWS file that lets you associate
specific XML element content and XML attribute values to specific Java parameters and return values without incurring
dependencies among them.

In the example above, the serialNumber parameter is mapped to the value of the id attribute, while the partName parameter is
mapped to the value of the part element. This is accomplished through the use of {} (curly braces) in the Mapping Layer. As
with default maps, curly braces act as substitution directives that funnel XML content into Java parameters.

XML Mapping Directives
In addition to the general mapping types discussed so far, there are several mapping directives that are useful in handling
special mapping cases. These directives include:

e <xm: value> and <xm: attribute>
e <xm: multiple>
e <xm: bind>

<xm: value> and <xm:attribute>

Curly braces represent a quick and convenient way (a syntactical shortcut) to map the content of an XML element or attribute
to a Java parameter. The <xm:value> and <xm:attribute> directives provide a more explicit way of accomplishing the same
thing. Use <xm:value> to map XML elements. Use <xm:attribute> to map XML attributes. The two examples that follow are

equivalent:

e 2

* fjws:operation
* f9ws:parameter-:ml xzml-map::
“getInventor >

“gquervData >

* “part id="{serialNumber}":{partName}: pact:>
< /queryrDatas
* < /getInventory>

* same example as abowve, but using <xm:value> and <sxm: attribute>
* fljws:operation

* f9ws: parameter-:ml zml-map::

* «getInventor: >

“querData >
< park >

* <xm:value cbj="String partName"/>

* <xm:attribute name="id" cbj="serialRumber" />
< /part >

</ queryrDatas

* < /getInventory>

<xm: bind>

You can declare temporary variables within an XML map using the <xm:bind> directive. This directive is helpful when you
need to populate so many fields in a Java object that the value names become awkward or unwieldy. For example:

Sk
* Using <xzm:bind* in a custom map to save tiyvping .
"

Hjwm: operation
* fiws: parameter-xzml :ml-map::

* ougetInventory® xmlas="http:/ www. opsauri.org/ ">

* “request an:bind="request i= request™:

* “requestId: | request request Id] </ feque st Id>

* “queryData xm:bind="query i=s request.gqueryData™:>

* “merialllumber:|query serialllumbez]~ /serialllumberz>
* cpartllame: {query . partllame | < /pactlame:

* < queryData:

* i requests

* o /get Inventor G

*

public int getInventorys (Request request)

1

if (reques=st '= null &G
request .queryData '= naull @@
123" lequals irequest .queryData . serialllumber)
"widget” .equals (tequest .queryData . partllamei |
re=turn 1:

retuzrn 0

]

o
o

Note: An xm:bind variable is only available within the element in which it was defined.

The value of the <xm:bin> directive has the following form:

<some-element xm:bind="variable-type variable-name is value">

The variable-type is the (optional) Java class name of the object you want to bind. The variable-name is the name you want to
call the variable within the XML map. The value attribute indicates what the variable actually refers to.

The custom Parameter XML map you create for this code looks like this:

EML:

[Parsemeter v | | Retum L |
This input XML messane maps bo the parsmeters of the operstion.

Map Type: (OiDefaut @ Custom

e cInvem: oryt xmins="hotp: /o, OpenuEl . orgse
Crequeat xmibind="reguest 1= request’:
<requestlds{gaquese, ceguestTd)< /raquestIds
<querylata sm:ibind="query¥ is request.quecylata™:
<zerialfumbers { query. seciallumber)< seriallumber>
<patrthame> | query. parciame } < /partiane’
£ fqueryhacas
£ rEue s
<fgetInventaryas

Javac

public int getlnventorys (Requast cequest)

<xm: multiple>
An XML message may contain elements that occur multiple times within an XML document. For example:

“QueryData >
< merialllumber 1234 ‘serialllumbec:
< partllumber »widgets /partlumbe >
= e rrData
“QueryData:
Cmmrialllumber 22345 ‘merialllumbe s
< partllumber >widgetl < / partllumber »
=/ QueryDatas

You can handle this situation programmatically via an array in your .jws file. Inthe following code sample, the <QueryData>
element represents an array that repeats to make up a single XML order with multiple child elements. The name of the XML
element corresponds to the Java type.

Ok b
* Using <xzm:fultiple>, which is =imilar to <zm:bind* with the
* exception that <m:multiple> will bind its wariable to =ach
* of the values in the arra;, resulting in the number of blocks of the
* dacluded HML being =qual to the Aumber of =lements in the array.
* fiws=:op=ration

public ant[] getInventory? (QueryData|[] querData)
!
if (queryData == nullj
return Aew intk[0];
int[] result = new int [queryData . length]:
for (int i1 = 0; i< result.leagth: 1i++]
1
1if (gqueryData[z] '= aull L@
1123d" equals (queryDatai] . serfialllumberz] &6
Twidget ™ equalsiqueryDatafi] . partllame=| |
result[1] = 1;
]

return result;

]

In this example, the <xm:multiple> directive specifies that the contents of the serialNumber and partName members of the
queryData array be stored as repeating blocks of XML elements.

The default Parameter map generated by WebLogic Server from the preceding code looks like this:

W Edit Maps and Interface i

L

|

[Parsmnater 3o | [Resturn oL |
Thig input WML messags maps to the parameters of the opsration.
Map Type: (8 Defeul) Cusbom

cgetlnventoryT sxmlns="httpt /. openuri. ocgs™ >
Coaeeylats xmibind="querybates 13 querybata's
£fueryDara ymiEilciple="g In QueErYDATA™>
cserialNunbers (g serialNumber < /aerialhumbers
<pactHame>q.pacthane | < /parthases

< FlnseryDacas

< fguerylatas

</gecinventory

Java:

public int[] getInventoryT(QuecyData[] quecyData)

[heb | [Cox] [Coneel

Notice that "q" is defined as an index into the array.

The <xm:multiple> directive takes the following form:

<some-element xm:multiple="variable-type variable-name in parameter name">

The variable-type is the (optional) Java class name of the object that is bound in sequence to every component of the array.
The variable-name is the name of the variable that iterates through the values in the array. It must be either a Java array or a
class implementing the java.util.List or java.util.Collection interfaces.

Conclusion

In this article, we described the basic types of XML maps and the mapping directives available in WebLogic Workshop. In the

next article, we'll show you how to use ECMAScripting.

Scripting capabilities are simply an extension of XML maps. They provide advanced mapping functions and are invaluable
when the preprocessing requirements of your XML are complex.

Source Code
Download the Inventory.jws file here.

L] Post Comment

"
Contact Dev2Dev | Site Map | RSS | Contact BEA | Terms of Use | Privacy | © 2007 BEA Systems - q’ & EE*E EE{H f'lea.

Corporate Links: Java Application Server | Enterprise Service Bus | SOA | Enterprise Portal | Java Virtual Machine

